Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38586934

RESUMO

In many animals, ultraviolet (UV) vision guides navigation, foraging, and communication, but few studies have addressed the contribution of UV signals to colour vision, or measured UV discrimination thresholds using behavioural experiments. Here, we tested UV colour vision in an anemonefish (Amphiprion ocellaris) using a five-channel (RGB-V-UV) LED display. We first determined that the maximal sensitivity of the A. ocellaris UV cone was ∼386 nm using microspectrophotometry. Three additional cone spectral sensitivities had maxima at ∼497, 515 and ∼535 nm. We then behaviourally measured colour discrimination thresholds by training anemonefish to distinguish a coloured target pixel from grey distractor pixels of varying intensity. Thresholds were calculated for nine sets of colours with and without UV signals. Using a tetrachromatic vision model, we found that anemonefish were better (i.e. discrimination thresholds were lower) at discriminating colours when target pixels had higher UV chromatic contrast. These colours caused a greater stimulation of the UV cone relative to other cone types. These findings imply that a UV component of colour signals and cues improves their detectability, which likely increases the prominence of anemonefish body patterns for communication and the silhouette of zooplankton prey.


Assuntos
Visão de Cores , Perciformes , Animais , Cor , Células Fotorreceptoras Retinianas Cones/fisiologia , Percepção de Cores/fisiologia , Raios Ultravioleta
2.
J Exp Biol ; 225(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35258087

RESUMO

Animals use colour vision in a range of behaviours. Visual performance is limited by thresholds, which are set by noise in photoreceptors and subsequent neural processing. The receptor noise limited (RNL) model of colour discrimination is widely used for modelling colour vision and accounts well for experimental data from many species. In one of the most comprehensive tests yet of colour discrimination in a non-human species, we used Ishihara-style stimulus patterns to examine thresholds for 21 directions at five locations in colour space for the fish Rhinecanthus aculeatus. Thresholds matched RNL model predictions most closely for stimuli near the achromatic point, but exceeded predictions (indicating a decline in sensitivity) with distance from this point. Thresholds were also usually higher for saturation than for hue differences. These changes in colour threshold with colour space location and direction may give insight into photoreceptor non-linearities and post-receptoral mechanisms of colour vision in fish. Our results highlight the need for a cautious interpretation of the RNL model - especially for modelling colours that differ from one another in saturation (rather than hue), and for highly saturated colours distant from the achromatic point in colour space.


Assuntos
Visão de Cores , Tetraodontiformes , Animais , Cor , Percepção de Cores , Limiar Sensorial
3.
4.
Proc Biol Sci ; 287(1935): 20201456, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32933449

RESUMO

To be effective, animal colour signals must attract attention-and therefore need to be conspicuous. To understand the signal function, it is useful to evaluate their conspicuousness to relevant viewers under various environmental conditions, including when visual scenes are cluttered by objects of varying colour. A widely used metric of colour difference (ΔS) is based on the receptor noise limited (RNL) model, which was originally proposed to determine when two similar colours appear different from one another, termed the discrimination threshold (or just noticeable difference). Estimates of the perceptual distances between colours that exceed this threshold-termed 'suprathreshold' colour differences-often assume that a colour's conspicuousness scales linearly with colour distance, and that this scale is independent of the direction in colour space. Currently, there is little behavioural evidence to support these assumptions. This study evaluated the relationship between ΔS and conspicuousness in suprathreshold colours using an Ishihara-style test with a coral reef fish, Rhinecanthus aculeatus. As our measure of conspicuousness, we tested whether fish, when presented with two colourful targets, preferred to peck at the one with a greater ΔS - from the average distractor colour. We found the relationship between ΔS and conspicuousness followed-- a sigmoidal function, with high ΔS colours perceived as equally conspicuous. We found that the relationship between ΔS and conspicuousness varied across colour space (i.e. for different hues). The sigmoidal detectability curve was little affected by colour variation in the background or when colour distance was calculated using a model that does not incorporate receptor noise. These results suggest that the RNL model may provide accurate estimates for perceptual distance for small suprathreshold distance colours, even in complex viewing environments, but must be used with caution with perceptual distances exceeding- -10 ΔS.


Assuntos
Escamas de Animais/fisiologia , Peixes/fisiologia , Animais , Percepção de Cores , Recifes de Corais , Pigmentação , Tetraodontiformes/fisiologia
5.
J Exp Biol ; 222(Pt 1)2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606793

RESUMO

Colour vision mediates ecologically relevant tasks for many animals, such as mate choice, foraging and predator avoidance. However, our understanding of animal colour perception is largely derived from human psychophysics, and behavioural tests of non-human animals are required to understand how colour signals are perceived. Here, we introduce a novel test of colour vision in animals inspired by the Ishihara colour charts, which are widely used to identify human colour deficiencies. In our method, distractor dots have a fixed chromaticity (hue and saturation) but vary in luminance. Animals can be trained to find single target dots that differ from distractor dots in chromaticity. We provide MATLAB code for creating these stimuli, which can be modified for use with different animals. We demonstrate the success of this method with triggerfish, Rhinecanthus aculeatus, which quickly learnt to select target dots that differed from distractor dots, and highlight behavioural parameters that can be measured, including success of finding the target dot, time to detection and error rate. We calculated discrimination thresholds by testing whether target colours that were of increasing colour distances (ΔS) from distractor dots could be detected, and calculated discrimination thresholds in different directions of colour space. At least for some colours, thresholds indicated better discrimination than expected from the receptor noise limited (RNL) model assuming 5% Weber fraction for the long-wavelength cone. This methodology could be used with other animals to address questions such as luminance thresholds, sensory bias, effects of sensory noise, colour categorization and saliency.


Assuntos
Percepção de Cores/fisiologia , Visão de Cores/fisiologia , Limiar Sensorial/fisiologia , Tetraodontiformes/fisiologia , Animais , Modelos Biológicos , Células Fotorreceptoras Retinianas Cones
6.
Front Physiol ; 9: 18, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29403394
8.
J Vis ; 16(10): 8, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27548086

RESUMO

Color conveys important information for birds in tasks such as foraging and mate choice, but in the natural world color signals can vary substantially, so birds may benefit from generalizing responses to perceptually discriminable colors. Studying color generalization is therefore a way to understand how birds take account of suprathreshold stimulus variations in decision making. Former studies on color generalization have focused on hue variation, but natural colors often vary in saturation, which could be an additional, independent source of information. We combine behavioral experiments and statistical modeling to investigate whether color generalization by poultry chicks depends on the chromatic dimension in which colors vary. Chicks were trained to discriminate colors separated by equal distances on a hue or a saturation dimension, in a receptor-based color space. Generalization tests then compared the birds' responses to familiar and novel colors lying on the same chromatic dimension. To characterize generalization we introduce a Bayesian model that extracts a threshold color distance beyond which chicks treat novel colors as significantly different from the rewarded training color. These thresholds were the same for generalization along the hue and saturation dimensions, demonstrating that responses to novel colors depend on similarity and expected variation of color signals but are independent of the chromatic dimension.


Assuntos
Teorema de Bayes , Percepção de Cores/fisiologia , Visão de Cores/fisiologia , Animais , Galinhas , Cor , Masculino , Modelos Animais , Estimulação Luminosa
10.
Curr Biol ; 13(3): R83-5, 2003 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-12573231

RESUMO

Humans lose colour vision at night and it has often been assumed that this happens to other animals as well. It is not true of nocturnal moths, however: a recent study has shown that the elephant hawk moth makes use of trichromatic colour vision when seeking flowers by starlight.


Assuntos
Percepção de Cores/fisiologia , Escuridão , Mariposas/fisiologia , Animais , Humanos , Mariposas/anatomia & histologia , Óptica e Fotônica , Células Fotorreceptoras de Invertebrados/anatomia & histologia , Células Fotorreceptoras de Invertebrados/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA